
                The Ultimate Mac Cracking
 Guide
--==< Foreword >==--

I would like to apologize to all members of the Hackintosh community for not
being able to complete the second part of The Ultimate Macintosh Cracking
Guide in time to be published in HackAddict 9! I’ve had some problems
including a cancellation of my Internet account. But now I’m back and here
to stay! The second part might be a bit blurry at times as I had to throw
together four thousand words in two days! But if you have any questions,
feel free to e-mail me. My e-mail address is: prozaq@usa.net

--==< Table of Contents >==--

I. Intro
II. Super ResEdit
III. Using Super ResEdit
IV. Other Uses of Super ResEdit
V. Variations to The Same Theme
VI. Pay Attention!
VII. Another Cracking Example
VIII. End of Part 2

--==< Intro >==--

Let me start off by refreshing your memory as to what happened in Part 1 of
“The Ultimate Mac Cracking Guide”. I guided you through how to use
MacsBug to find the conditional branch that decides whether the reg.
number you entered is valid or not. At this point a couple of things can
happen. The first situation is the best for the cracker! The program you’re
trying to crack is glad that you registered your software, updates the
preference file, and bothers you about registering no more! In this case you
won’t need ResEdit or any other materials! Be glad that you’re quest to crack
the software was successful!

But life ain’t that sweet! If the above situation occurs you are really lucky, as
most softwares are a hell of a lot harder to crack! If the registration box still
appears after relaunching the application then it’s probable that the
following situation occurs. The program checks the registration number

every time you launch the application, or several times while the application
runs. This is when we have to change the source code using ResEdit (The
only difference between ResEdit an Super ResEdit is that the later one
contains an assembly code editor that allows you to view the contents of the
CODE resource as assembly commands, not only as hexadecimal machine
codes. Whenever I use the word “ResEdit” I am in fact referring to Super
ResEdit!)

--==< Super ResEdit >==--

OK, launch ResEdit and let me explain a bit!    The Mac OS divides a file into
two parts. It’s first part is the “Data fork”, where it keeps data, such as the
ASCII characters in a text file. The second part is the “Resource fork”, this is
where the action is!    The resource fork contains information of the
application such as how the application’s dialogs look like, how it’s custom
windows look like, how the icons appear in the Finder, what ASCII strings the
application will put in error dialogs and a lot more!    In order to keep the Mac
as user friendly for the software developer as possible, Apple provides a very
humane way to create and edit resources through ResEdit. I will not go
through what all the different resource types are used for, as that would take
a hell of a long time! But here are the resource types of interest to us:

CODE - This is where the program’s codes is stored in assembly format.
These are the commands the program executes once it is launched from the
Finder.

CDEF - Same use as CODE. It is used in control panels.

cdev - Same use as CDEF.

INIT - Same use as CODE. It is used in system extensions.

DITL - This is where the design of a dialog box can be found. Where the
buttons and text fields are designed and can be edited.

DLOG - Where the position of a dialog can be changed.

ALRT - Where the position of alert boxes can be changed.

WIND - Where custom windows can be designed.

I can recommend that you play around with ResEdit for a while and get a feel
for how it works! HOWEVER! ALWAYS work on a COPY of the application you
want to change! Since ResEdit is directly messing around with the structure
of the program, if you mess up anything you can definitely screw up the

application (and if you’re lucky your system).

For now I will focus on the “CODE” resource (and all other resources that
serve the same purpose). Whenever anyone writes an application, in
whatever language, their compiler converts the code into assembly. In
assembly every command has it’s machine language equivalent, which is
stored as hexadecimal information. So the CODE resource contains these
hexadecimal assembly instructions. When you open up an ID from within
CODE resource, then a large window should appear with a bunch of assembly
commands and other nice info in it. (If ONLY a small window appears with a
bunch of hex numbers in it then you don’t have Super ResEdit!) If both the
big and small windows appeared then that’s good since you’ll need both. If
only the big window appears select “Always Open” from the Hex Editor
menu. This should bring up the small window with hex numbers in it. The
small window represents only the hexadecimal values of the assembly
commands while the big window translates these commands into a more
perceptive human language (if you can call assembly human).

Now if you have the big window up you’ll see 6 columns of information, each
of them representing one of the following things (from left to right):
Offset, Address, Opcode, Operand, Comment, Hex.

The Offset column represents the of the command with respect to the first
command in the subroutine.
The Address column represents the commands position from the first
command in that resource.
The Opcode section contains all the commands, and the Operand column
contains which registers are affected by the command.
The Comment column helps you see what type of info is moved around.
And the Hex column shows what the opcode and the operand section turns
into when it’s translated to machine language.
The beginning of the different subroutines are represented by a name in red,
bold print on the left side of the window. Usually these are just called
“Anon#”. You can see a list of all the subroutines in the Modules menu.

--==< Using Super ResEdit >==--

So what’s all this good for? Well... as I said before, most programs contain
more security then the program discussed in part one of The Ultimate Mac
Cracking Guide. Imagine the following situation:
You crack a program with MacsBug. You know this because the “thank you
registering” dialog appears. But the next time you launch the application it
asks for the reg. number again. What this CAN mean is that after you crack
the program with MacsBug the program stores the information you entered
in either a preference file or in a resource.    And every time you launch the

program it checks to see if the reg. name and number match. So in theory if
you change the conditional responsible for the validity of the reg. number in
the application itself, then it doesn’t matter how many times the program
checks, as the reg. number you entered will always turn out to be a valid
one!
And this is where we use Super ResEdit. Let’s say that we have established
that the application checks for the reg. number every time it starts up.    It is
likely that the application uses the same subroutine to check the reg.
number at startup as it used when you entered the reg. number in the reg.
dialog.
So to use the example from part one, here’s what I found out from MacsBug:

          +0012C 00D2E788      PEA                -$0308(A6)  | 486E
FCF8
          +00130 00D2E78C      PEA                -$0108(A6)  | 486E
FEF8
          +00134 00D2E790      JSR                xxxxxxxxxxx  | 
4EB9 00D2 CDD8
          +0013A 00D2E796      MOVE.B          (A7)+,D0  | 
101F
          +0013C 00D2E798      BEQ.S            XXXXXXXXX+00142                ; 00D2E79E      | 
6704

And after following through the code I know that the subroutine in 134 does
the conversion of the registration number I entered and at offset 13C the
conditional checks whether my reg. number is the same as the valid reg.
number. When I was dropped into MacsBug after I initiated the “modaldialog”
atrap the following information was given to me by MacsBug:

    D_PERSONALIZE
          +0009A 010E7956      _ModalDialog  ; 0028D906      | A991
This means that the modal dialog trap occurs in the subroutine
D_PERSONALIZE. Most often though, you will be given something like this by
MacsBug when encountering an atrap:

A-Trap break at 00D1A908 'CODE 0002 1B8C'+02E88: A97C

Here’s what the two sets of info mean. The first one means that the person
who wrote the software decided that he will make life easy for crackers and
called the subroutine dealing with registering the software
“D_PERSONALIZE”.

The second info means the following: The atrap occurred in the resource
“CODE” with resource ID 0002. And this is all we need to know! If you open
up the application with Super ResEdit and open up the CODE resource with

an ID number of 2 you can go to the offset given to you by MacsBug.
If the situation is like the one in the first example where only the name of the
subroutine is given then you have to go through each ID number in the CODE
resource and look for a subroutine called “D_PERSONALIZE”. You can find a
list of all the subroutines used within an certain ID in the Modules menu.

So let’s say the following I get the following info in MacsBug once I step
through the code after the modaldialog atrap:

A-Trap break at 00D1A908 'CODE 0002 1B8C'+02E88: A97C 
            blah blah
            blah blah
          +0012C 00D2E788      PEA                -$0308(A6)  | 486E
FCF8
          +00130 00D2E78C      PEA                -$0108(A6)  | 486E
FEF8
          +00134 00D2E790      JSR                xxxxxxxxxxx  | 
4EB9 00D2 CDD8
          +0013A 00D2E796      MOVE.B          (A7)+,D0  | 
101F
          +0013C 00D2E798      BEQ.S            XXXXXXXXX+00142                ; 00D2E79E      | 
6704

So, lets say that I wanna change the conditional at offset 13C in the source
code of the application so that it will branch every time no matter what!
I open the application with Super ResEdit and open up the CODE resource, I
open up the resource with ID 2. Then I have to find the offset at 13C. You
have to realize that the large window that disassembles the assembly code is
only for viewing. Meaning that you can not change anything there! You have
to work with the small window containing the Hex Editor info if you want to
find and change things.
So I make the Hex Editor the window active. This brings up a new menu. The
“Find” menu. This allows me to search for hex strings, for ASCII strings or
offsets! And since I wanna search for an offset I activate the search for offset
dialog and type in 13C. After I hit the Find button two digits are selected in
the Hex Editor window (for this example the two digits selected would be 67).
If I now activate the big window, I should be at the offset 13C. Meaning that I
should be seeing exactly what was displayed to me by MacsBug. Now I could
have a closer look at what was going on if I needed to!

So I know that I need to change this assembly instruction:
BEQ.S            XXXXXXXXX+00142
It’s hex equivalent is 6704.    How do I know?    

+0013C 00D2E798      BEQ.S            XXXXXXXXX+00142                ; 00D2E79E      | 6704

When MacsBug displays a command it shows me the hex equivalent of the
command too! It is always the hex number appearing after the “|” sign. (I
underlined it and put it into a bold print above). This hex number can be
between 4 and 16 digits long. I know that I have to change the BEQ.S
command to a BRA (Branch always) command. So I activate the Hex Editor’s
window and type “60”.
In machine code all branch routines start with a 6. The BRA command is the
number 60, and that’s why I replaced 67 with 60. I DIDN’T change the
second half of 6704, as “04” contains the information regarding where the
conditional should branch to! If I change “04”, then the program will branch
to a bad offset and will most likely cause my computer to crash!

Now, if I DIDN’T want the conditional to branch, I could simply get rid of the
command. However, simply deleting 4 digits is not the way! Just deleting
6704, will most likely cause the program to crash! Instead, I will replace the
conditional by a NOP command. NOP stands for no operation. Meaning that
the processor will not execute any operations for that command. It will
simply jump to the next command in line.
To change the conditional instruction to never branch, activate the Hex Editor
window and highlight the next two digits as well (so all together I will now
have four digits selected “6704”). Then I would type “4e71” (as this is the
equivalent of NOP in machine language). If I now go back to the big window, I
can see that the command has been changed to NOP! Success!

Now I would save my work and try and run the application again. If it freezes
I have goofed up somewhere. If not, lets test it! At this point, however, I will
no longer have to crack the programs registration dialog with MacsBug, as I
have changed the code within the application to do what I want it to do! So I
could just enter anything I wanted as a reg. name and number. If the
program says that I entered the wrong registration number, then I goofed up
in cracking the program with MacsBug! I have to start from the beginning
and look for another conditional.
If I’m lucky, then everything goes fine, and when I relaunch the application it
will say that it is registered to me.

---===< Other Uses of Super ResEdit >===---

ResEdit is not only useful if you want to change the assembly code of an
application! You can use it to help you through the process of cracking. For
example, I almost always start off with opening up the program in ResEdit
and look around amongst the dialog resources. I’m looking for the “thanx for
registering” dialog. I write down it’s ID value and if I see that number being
mover around in MacsBug than I know that I’m on the right track! I also try to
find the “wrong number” dialog just to see how it looks like! You may also
find hidden pictures and shit like that with ResEdit! ResEdit ROCKS! Handle it

with care and it’ll be good to you! Mistreat it and it’ll screw up your
computer!

--==< Variations to The Same Theme >==--

Up ‘till now, the situation was that the program used a subroutine to do
calculations with the reg. number you entered and then returned from the
subroutine and checked to see whether the reg. number you entered was
valid or not.
Now, there is virtually an infinite amount of ways to protect software, and
software developers know this! And if they are smart they will use various
tricks to protect their softwares!
Another situation you might find yourself in, while cracking a program, is that
there are two conditionals you need to change! This means that within the
subroutine that checks the reg. number you entered, the program sets two
flags. One of the flags is representing that the reg. number is correct or
incorrect, and the second flag tells the program whether to update itself to
the registered version or not!    This is again a simple example. The
developers of the program might have done something ingenious, so it might
be a lot more complex than that!
If, however, this is the situation, then you will have to find the two
conditionals and change BOTH of them accordingly!

---===< Pay Attention! >===---

Therefore, it is extremely important that you know exactly what the hell is
going on in the program! When you step through a code in MacsBug pay
attention to what is happening to the address registers! When you see that
A0, A1,A2 or A3 contains your reg. name or reg. number then you know that
you are getting closer! Also look out for the hex value of the reg. number you
entered. For example, if you entered “12345” as a reg. number also look for
its hex equivalent “3039”! If you see commands like: cmp.l
130(a6),d0

 and don’t know how to access that specific part of the memory, then simply
type: “dm a6+130” into MacsBug and it will show you the info that is
contained 130 bytes away from a6’s current position. If you can’t figure out
what a command does, refer to the “List of Assembly Commands” file
(included in HackAddict 8 as Appendix A). And if you still can’t figure out a
command then mail me! And remember!    Nothing is uncrackable! It’s
merely a matter of time! If you sit around for long enough you will figure out
what the little bugger does and then you’ll also figure out how to crack it!

---===< Another Cracking Example >===---

I will now guide you through how I cracked a control panel recently. I will not
mention any names as I just want this to be a theoretical example to what
protection schemes you may encounter. Also this might give you an idea to
what you might be doing wrong! What you might be spending too much time
on, and things like that!   

Cracking the control panel seemed at first as a piece of cake, as the control
panel had a subroutine followed by a conditional. So I changed the
conditional, and since nothing happened I thought I cracked it! But then I
started to look around in the program with ResEdit, and I noticed that the
program created STR# resource with my information in it! And since I didn’t
get a “thanx for registering” dialog, I was a bit skeptic of my success!

So I deleted the STR# resource and started from the beginning again! But
again when I changed the conditional the program added the STR# resource
to itself! “Very fishy” I thought! So I started to take a closer look in it with
ResEdit! I didn’t find a “thanx for registering” dialog. So I got curious and
found in HackersHelper the registration number for an older version of the
control panel. I tried the serial number given in HackersHelper and presto!
An error dialog greeted me informing me that I was using a PIRATE
registration number! What do you say to that? Never had that happen
before! Very ingenious if you ask me!

So I found an older version of the control panel on a shareware CD of mine,
and when I used the pirate reg. number on that one it worked! And as it
turned out the program didn’t put up a “thanx for registering” dialog, but
simply wrote “registered to ProZaq” in the upper left corner. Tricky! Very
Tricky!

But now at least I knew that I have to follow through that subroutine before
the conditional! So I did! And the damnest thing happened! Before long I
found myself in the subroutine responsible for comparing the reg. name I
entered to the reg. names given by Hackers Helper and HackUser! Now this
was a hell of a subroutine! It was gonna compare my reg. name to that of a
pirate one about 30 times!    I found this out from looking into one of the
address registers! So here’s a trick to do when you’re faced with a similar
situation. Let’s say that you’re stuck in a subroutine like this:

Shit_routine: (name of subroutine)
          add.b 1,d0
          blah
          blah
          blah
          blah

          another 100 blahs
          cmpi.b
#1000,d0
          bne          shit_routine
          cmpi.b
d3,100(a6,d0)
          rts

What the subroutine does is unimportant! The important thing is that it does
the same shit 1000 times! After every “blah” it compares the value of d0 to
1000 and if it doesn’t equal 1000 it adds 1 to d0, and does the “blah”s again.
Now for the computer 10000 instructions won’t take long! But for me to sit
around and press return 10000 times would take a bit too long! So here’s the
solution. Use the break command in MacsBug! Just issue MacsBug the
command “br addr” where “addr” is the address of the command you want
the processor to halt at! For example, in MacsBug the last command I gave
you in that example subroutine, might look something like this:

+0013C 00D2E798      CMPI.B
D3,100(A6,D0)               

So if I wanted to be dropped into MacsBug every time the processor
executed that specific instruction I would issue the command “br d2e798”.
Make sure that you don’t use the offset with the plus sign in front of it! (in
this case 13C) (You clear break points with the “brc” command. For more info
on using break points type “help br” in MacsBug)

And so after I used the break command, I regained control of the computer
after the program was done checking for the pirate names! Then I found
myself in the subroutine responsible for putting my reg. number under an
algorithm. And once it was done doing that, I found out that it checked to see
if my reg. number was a valid one, and if it was it set TWO flags! It made
both d1 and d7 equal one! (I must say that either this code was written with
a horrible compiler, or it wasn’t optimized at all! I could have written the
same damn algorithm in assembly, so that it would have taken about half as
many commands to achieve the same thing!)

And after that there was a conditional within the subroutine checking to see
if the hex value of the reg. number I entered (stored in d0) equaled that of
the correct one (stored as an offset to A6). And it was a good thing that I left
a br mark at this conditional by an accident because the program rechecked
my reg. number four more times before it accepted that I entered the right
reg. number! What a bitch!

And since I followed through the code thurally I also found out what
algorithm it used to derive the correct reg. number! So if I wanted I wouldn’t

have needed to change anything in the program! I could simply calculate
what reg. number would be valid for the reg. name “ProZaq” and simply
enter that in the registration dialog!

I did however also change it’s code with Super ResEdit. I changed the
conditional that the program referred to 4 times! And so the next time I could
enter any reg. name and any reg. number and it would accept it!

So here’s a summary of what types of security precautions the software
used!
      1. It checked to see if my reg. name was that found in HackersHelper or
HackUser. This is a very unusual thing to do! I’ve never seen software of this
caliber do this before!
      2. It did a bunch of calculation with my reg. name. Almost all programs
with serial number protections do this!
      3. It compared the reg. number I entered to a valid one. Again, this step is
used by most softwares!
      4. If these two numbers were equal it set two flags, one in d1 and one in
d7. Quite a common technique. Makes life a bit of a bitch!
      5. It rechecked 4 more times whether the reg. number I entered was valid
or not. G’Damn! Give it a break! Most programs (of this size) only check for
the validity of the two numbers once or twice! But since it was the same
conditional that did the checking, after I changed it with ResEdit, I could
enter any reg. name and number I wanted!

---===< End of Part 2 >===---

Part two of The Ultimate Mac Cracking Guide might have been a bit sloppy
but I didn’t have much time to put it together! In the next part I will discuss
other tricks program writers use to protect their softwares. I will also try and
describe how to find a reg. number that will work for a specific reg. name.
And if time and space permits I will also give suggestions to what to do when
a-traps won’t work!

